

GUIDEBOOK

A PREPARATION
GUIDANCE FOR
ISTRUCTE
EXAMINATION

By Structural Fireman

Contents

EXAMINA	ATION FORMAT	
EXAM	INATION FORMAT	7
TIMET	ABLE FOR MY-SELF	9
SECTION	I 1(a): TWO DISTINCT AND VIABLE SCHEMES	11
INTRO	DUCTION AND PREPARATIONS	11
Ge	neal Marking Scheme (for HKIE)	11
	ggested Time Allocation	
1' INIT	IAL THOUGHT & DESIGN APPRASIAL	14
Init	tial Thoughts Checklist	14
2' ASS	SUMPTIONS	19
	ample for Assumption	
Ex	ample List for Assumption	20
3' INT	RODUCTION	21
Int	roduction	21
	HEME OPTIONS DRAFT	
	stinct	
	ample	
	HEME 1 – CONCRETE	
SC	HEME 1	
A.	Scheme Description	
В.	Function Framing	29
C.	Load Transfer and Stability (RC Scheme)	33
D.	Other details - #1 - Basement Scheme	39
E.	Other details - #2 - Progressive Collapse	41
F.	Feasibility Checking and Sizing	42
G.	Other Considerations (如果出現以下情況可以考慮寫)	46
6' SCH	IEME 2 – COMPOSITE STEEL	48
SC	HEME 2	48
A.	Scheme Description	48
В.	Function Framing	52
C.	Load Transfer and Stability	54
D.	Basement Scheme and Progressive Collapse	64
E.	Feasibility Checking and Sizing	65
F.	Other Considerations	68

7' RECOMMENDATIONS	69
Scheme Recommendation	69
Scheme Recommendation "USE" (Concrete VS Structural Steel (WIN))	70
Sustainability Aspect for Steel Scheme	71
Scheme Recommendation "USE" (Concrete (WIN) VS Structural Steel)	73
Sustainability Aspect for RC Scheme	74
Scheme Recommendation Example 1 (Concrete VS Structural Steel)	
Scheme Recommendation Example 2	77
SECTION 1(b): LETTER TO CLIENTS (FOR ISTRUCTE ONLY)	78
INTRODUCTION AND PREPARATIONS	
Marking Scheme (Assume)	78
LETTER CHECKLIST	79
2024 UPDATE FOR SUSTAIBABILITY	
LETTER TEMPLATE	82
LETTER EXAMPLE (2016 Jul Q1)	
LETTER EXAMPLE (2019 Jul Q4)	87
LETTER EXAMPLE (2025 Jul Q2)	
CONSIDERATION	
IMPLICATIONS	
Basement Improvement	
Superstructure Improvement	
OTHER CASES	101
EXTRA POINTS TO NOTE	
EXAMPLE FOR ADD BASEMENT	103
SECTION 1(b): WIND LOAD CALCULATIONS (FOR HKIE ONLY)	105
INTRODUCTION AND PREPARATIONS	105
Answer shall include	105
Examiner Report / Marking Scheme	105
Suggested Time Allocation	105
WIND LOAD DESCRIPTION	106
WIND LOAD ASSUMPTION	107
WIND LOAD CALCULATIONS	108
STABILITY CHECKING	109

SECTIOI	N 2(c): DESIGN CALCULATIONS	110
INTR	ODUCTION AND PREPARATIONS	110
M	arking Scheme	110
Sı	uggested Time Allocation	110
INTR	ODUCTION	112
In	troduction	112
A. CC	NCRETE CALCULATIONS	113
Co	ontent!	113
1.	Slab (150 mm Thk.)	114
2.	, , , , , , , , , , , , , , , , , , , ,	
3.	Cantilever Beam (500 X 650 dp.)	118
4.	Transfer Beam (1500 X 2500 dp.)	119
5.	, , , , , , , , , , , , , , , , , , ,	
6.	Hanger Column HP (750 X 750)	
7.	,	
8.	Flat Slab (500 mm thk.)	124
Co	ontent!	
1.	Precast Planks	
2.	Primary Steel Beam	128
3.	Cantilever Steel Beam	129
4.	Transfer Truss (2500 mm depth)	130
5.	Steel Column	131
6.		
7.	Diagonal Props	134
C.	FOUNDATION CALCULATIONS	135
Co	ontent!	135
E	kaminer Report / Marking Scheme	135
1.	Pad Footing	136
2.	Footing (1000 X 1000 X 1500 dp.)	137
3.	Bored Pile BP (_ mm)	138
4.	Pile in Cohesive Soil	139
5.	Pile in Granular Soil	140
6.	Pile Cap ((d+1000) X (d+1000) X 1500 dp.)	142

D. ST	ABILITY CALCULATIONS (FOR IStructE Only)	145
Conte	nt!	145
1.	Wind Load Estimation	146
2.	Stability (Bracing Member)	147
3.	Stability (Shear Wall)	148
E. 01	HER CALCULATIONS	150
Conte	nt!	150
1.	Basement Slab (_ mm thk.)	151
	Screen Wall (_ mm thk.)	
	FORMATION F01 A1 – A3 CARBON CALCULATIONS	
SECTION 2(d): DETAILED DRAWINGS	158
INTRODU	JCTION AND PREPARATIONS	158
	ng Scheme (HKIE)	
	o be Included	
Sugge	ested Time Allocation	159
Plans	and Sections	159
	S	
GENERA	L NOTES (CONCRETE)	161
	L NOTES (STRUCTURAL STEEL)	
DRAWIN	GS - PLAN (CONCRETE)	163
DRAWIN	GS - PLAN (STRUCTURAL STEEL)	164
DRAWIN	GS - PLAN (DETAILS)	166
	Slab Details	
2.	Beam Details	167
3.	Transfer Beam Details	167
4.	Column / Wall Details	168
5.	Basement Wall Details	169
6.	Pile Cap Details	171
7.	Steel Connection Details	172
8.		173
9.		174
10.		175
11.	IN FULL VERSION	176
12.		177
13.		178
14.		180
15.		181

SECTION 2(e): METHOD STATEMENT	183
Examiner Report / Marking Scheme	183
METHOD STATEMENT CHECKLIST	184
GENERAL METHOD STATEMENT	185
Site Set-Up	185
Site Survey and Monitoring	185
Deep Foundation (Bored Piles) and ELS works	
Deep Foundation (Socketed-H Piles) and ELS works	185
Deep Foundation (Driven Piles) and ELS works	185
Shallow Foundation (Footing) and ELS works	185
Basement and Pile Cap	186
Swimming Pool (if Applicable)	186
Retaining Wall (if Applicable)	
Superstructure (Concrete)	
Superstructure (Structural Steel)	
Site Clearance and Handover	187
SPECIAL METHOD STATEMENT	188
SECTION 2(e): CONSTRUCTION PROGRAMME (FOR HKIE ONLY)	
Examiner Report / Marking Scheme	189
CONSTRUCTION PROGRAMME	189
Construction Programme Checklist	189
Example	190

4' SCHEME OPTIONS DRAFT

Must show to marker (target 3-5 分鐘)

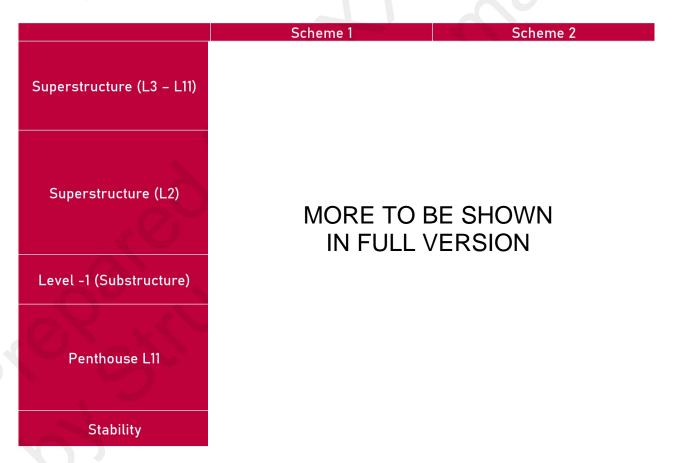
The table below shows how you might think about putting together your different ideas to form two distinct and viable solutions:

#	Туре	Scheme 1	Scheme 2			
1	Materials	Reinforced Concrete	Structural Steel			
2	Structural Grid					
3	Vertical Stability System / Floor ??	MORE TO BE SHOWN IN FULL VERSION				
4	Lateral Stability System					
5	Beam and slab arrangement					
6	Basement	RC ground bearing slab <mark>太大水壓唔好做</mark> / Suspended Slab	RC raft / Suspended Slab			
7	Foundation solution					
8	Construction method	MORE TO BE SHOWN IN FULL VERSION				
9	Retaining Wall		milernally			
10	Cantilever	R.C. downstand beams cantilever	Diagonal steel struts to external envelope			

Consider Flat slab 如果 headroom 好小!!!

Distinct

The more of these attributes you can vary between your two schemes the better. Aim for at least three/four:


#	Туре	Distinct Point
1	Materials	- Steel - Concrete
2	Structural Grid	Square / rectangularDistance between columnsConstant or varied grid
3	Stability System	
4	Slab Span Direction	
5	Primary / Secondary Beam Layout	MORE TO BE SHOWN
6	Foundation solution	IN FULL VERSION
7		
8		
9		

Example

Scheme Options Draft (2016 Jul Q1)

	Scheme 1	Scheme 2
Structural Grid	- 10	
Internal Floors		
Level -1		
Columns	- MORE TO	BE SHOWN
Cantilever	IN FULL	VERSION
Stability	-	
Foundations	-	
Basement	-	
Retaining Wall		

Scheme Options Draft (2019 Jul Q4)

7' RECOMMENDATIONS

Scheme Recommendation

For each scheme, list a number of advantages and disadvantages (at least 2-3 of each).

Aspect	Think about
Superstructure geometry	 Slimmer floorplate Fewer downstand beams Greater column spacing (Steel) Smaller column
Site / Construction issues	 No large elements to be delivered to site Simper temporary works condition Reduced health and safety risks
Quality / Aesthetics	
Programme	MORE TO BE SHOWN IN FULL VERSION
Economy	
Environmental	
Health and Safety	
))	

Based on the above discussion, I recommend that option X is the scheme taken forward.

MORE TO BE SHOWN IN FULL VERSION

Sustainability Aspect for RC Scheme

* 整段 description 再揀幾個黎寫

Strengths:

- Superior operational carbon performance through thermal mass
- Minimal maintenance requirements reducing lifecycle interventions
- Burner Land Control of the Control o
- _

Enviro

- •
- •
- •
- •
- •

Resou

- •
- •
- •
- •
- •

Whole

- •
- •
- .
- •

Social

- •
- •
- •
- •

版權:使用者只可將內容用作本人預備相關考試使用,不可翻印或用作任何相當用品。

Economic Longevity

- Delivers extended maintenance-free service intervals (20-30 years typical)
- Requires minimal whole-life maintenance expenditure

2024 UPDATE FOR SUSTAIBABILITY

REDUCE THE MATERIAL USE WHILE MAINTAINING THE FLOOR PLAN AND NUMBER OF STOREYS

Example

Case 1 - 如果題目有 Transfer Requirement

PROPOS!

Current I

- S
- T
- . .

Proposec

- A
- P

Benefits:

- F
- R
- •
- C
 - C

Case 2 -

PROPOS!

Current I

- 2
- C

Proposed

- L
- I
- S
- . .

Benefits:

- 0
- • F
- •
- V
- 2

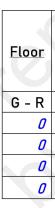
WIND LOAD CALCULATIONS

Part 1 - Building Information

Floor	no. of floor x	Floor Height	Total Height (H)	Effective Height He (m)	breadth (m) - b	depth (m) - d
G - R	6	7.77	46.6	46.6	85	62
0	0	0	0	0	0	0
0	0	0	0	0	0	0

(added if different floor area)

Part 2 - Wind Load Factor


Floor	
G - R	
0	
0	Ī
/ 11 1	

(added i

Floor	
G - R	
0	
0	
(added	i

MORE TO BE SHOWN IN FULL VERSION

Part 3 -

(added i

CARBON CALCULATIONS per meter run (for IStructE) for beam (formwork ignored)

		\sim		
ш				
1		Q	u	C

- Mas

- Rebi

Mas

2. Car

- Conc

- Reba

3. Car

MORE TO BE SHOWN IN FULL VERSION

- Rebi

Total (

th)) = 0.78 t/m

out

placement)

版權:使用者只可將內容用作本人預備相關考試使用,不可翻印或用作任何相當用品。

Details

It's assumed that a cost estimate will be prepared using the drawings and so the following information should be provided on the plans: (min. of 3)

ltem	Details	Location
1	• • • •	
2		
3		
4	MORE TO BE SHOWN IN FULL VERSION	
5		
6		
7		
8		
9		
10		
11		
12		
13		

根據 Marking

Details to be provided (For IStructE only)

Item	Standard Details (S)	Bespoke Details (B)
1	Slab to primary beam connection	Truss detail
2 3 4 5		
7 8		BE SHOWN VERSION
9		
10		
12		

METHOD STATEMENT CHECKLIST

Constraints	Initial Thought
1. Preliminaries	Contractor site setup, site compound, hoarding, access routes
2. Existing buildings	Carry out condition surveys, temporary shoring (e.g. façade retention), permanent support (e.g. underpinning)
3. Neighboring buildings -	
4. Enabling works -	
5. Foundations -	
6. Basement	
7. Superstructure	MORE TO BE SHOWN IN FULL VERSION
8. In-situ concrete slabs	
9. Scheme specific issues	

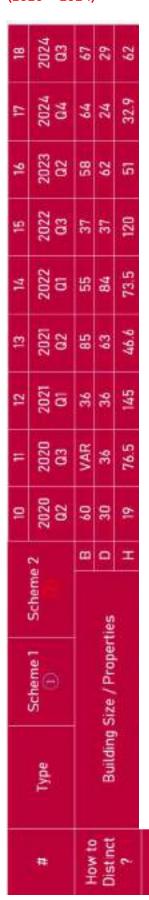
SECTION 2(e): CONSTRUCTION PROGRAMME (FOR HALE ONLY)

Examiner Report / Marking Scheme

(HKIE 2020 Q3)	
Sub	
Can	
their	
appr	
supe	MORE TO BE SHOWN
(HKIE	IN FULL VERSION
Sub-s	HTT OLL VERGIOTT
Cand	
unde	
and c	

CONSTRUCTION PROGRAMME

Construction Programme Checklist


Process	Duration	Lead-in Time	
Enabling works			
Mobilization		4 weeks	
Site set-up	2 weeks		
Surveys	1-2 days plus 1-2 weeks write-up	2 – 4 weeks	

APPENDIX A: HKIE PASTPAPER ANALYSIS & TIPS (2025)

(2016 - 2019)

(2020 - 2024)

